durations module#

class durations.DurationMeasure#

Bases: object

Class for analyzing experimental data, comparing filtered vs unfiltered approaches. Processes asset data, calculates statistics, and generates visualization heatmaps.

calculate_median_duration(asset_data: Dict[str, DataFrame]) DefaultDict[str, DefaultDict[str, float64]]#

Calculate average values for each asset across all samples.

Args:

asset_data: Dictionary mapping task names to DataFrames with asset data

Returns:

Nested dictionary with task names, asset names, and their average values

clean_asset_name(asset_name: str) str#
collect_asset_paths(asset_paths: Path | None = None) DefaultDict[str, List]#

Collect asset paths organized by task name.

Args:
asset_paths: Path to the directory containing assets.

Defaults to BASE_PATH/cache/assets/COMET_WORKSPACE.

Returns:

A dictionary mapping task names to lists of asset paths.

prepare_data()#

Load and prepare data for analysis.

Returns:

Summarized data with average values for each asset and task

rename = {'AutoFilterChenLike': 'AE', 'HDBScanFilter': 'HDBSCAN', 'IsolationForestFilter': 'IF', 'LocalOutlierFactorFilter': 'LOF', 'LoserFilterPlain': 'DSM', 'SingleStepEntropySimplePseudo': 'SSE'}#
run(minimal_diff: bool | None = False)#

Main execution method. Prepares data, creates visualizations, and saves results.