durations module#
- class durations.DurationMeasure#
Bases:
object
Class for analyzing experimental data, comparing filtered vs unfiltered approaches. Processes asset data, calculates statistics, and generates visualization heatmaps.
- calculate_median_duration(asset_data: Dict[str, DataFrame]) DefaultDict[str, DefaultDict[str, float64]] #
Calculate average values for each asset across all samples.
- Args:
asset_data: Dictionary mapping task names to DataFrames with asset data
- Returns:
Nested dictionary with task names, asset names, and their average values
- clean_asset_name(asset_name: str) str #
- collect_asset_paths(asset_paths: Path | None = None) DefaultDict[str, List] #
Collect asset paths organized by task name.
- Args:
- asset_paths: Path to the directory containing assets.
Defaults to BASE_PATH/cache/assets/COMET_WORKSPACE.
- Returns:
A dictionary mapping task names to lists of asset paths.
- prepare_data()#
Load and prepare data for analysis.
- Returns:
Summarized data with average values for each asset and task
- rename = {'AutoFilterChenLike': 'AE', 'HDBScanFilter': 'HDBSCAN', 'IsolationForestFilter': 'IF', 'LocalOutlierFactorFilter': 'LOF', 'LoserFilterPlain': 'DSM', 'SingleStepEntropySimplePseudo': 'SSE'}#
- run(minimal_diff: bool | None = False)#
Main execution method. Prepares data, creates visualizations, and saves results.